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Combined atomistic—crystal plasticity analysis
of the effect of beta phase precipitates on
deformation and fracture of lamellar v + o
titanium aluminide
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Clemson University, Clemson, SC 29634, USA

Atomistic simulations based on the use of interatomic potentials and a finite element
method based on the crystal plasticity theory are combined to investigate the deformation
and fracture behaviour of polycrystalline lamellar y-TiAl 4+ a,-TisAl material containing

10 vol % of body centred cubic beta phase precipitates. The effects of both stable beta phase
precipitates, which deform by slip, and metastable beta phase precipitates, which deform
by a combination of stress-induced martensitic transformation and slip, are studied. To
model the cracking along the grain boundaries and the matrix—precipitate interfaces, the
grain boundaries and interfaces are modelled using a cohesive zone approach. The grain
boundary-interface potentials are determined by carrying out atomistic simulations of the
grain boundary-interface normal separation (decohesion) and sliding.

The results obtained suggest that incompatibilities in the plastic flow between the
adjacent grains in the single-phase material give rise to a large build-up in tensile
hydrostatic stress in the region surrounding certain three-grain junctions, which, in turn,
leads to nucleation of the grain boundary cracks and ultimate failure. The stable beta
phase precipitates located at the three-grain junctions in the two-phase material help
accommodate the incompatibilities in plastic flow, doubling the strain to failure. The lattice
expansion, which accompanies martensitic transformation in the metastable beta phase
precipitates, further delays nucleation of the grain boundary-interface cracks giving rise to
an additional increase in the fracture strain. © 7999 Kluwer Academic Publishers

1. Introduction phase. Recently, Grujicic and Dang reported a signifi-
Two-phasey -TiAl + a»-TizAl alloys with fine scale cantenhancement (approximately 80%) in the ductility
(approximately 1-2m) lamellar microstructure have and fracture toughness of lamellar o> containing
received considerable attention over the last ten yeard,0 vol % of Ti—-V—Al based body centred cubic (b.c.c.)
due to their enhanced ductility and fracture toughnesseta phase precipitates [2].

(e.g. [1]). The enhanced ductility and fracture tough- Over the last two decades, various investigations
ness are attained primarily in the single-crystallinehave clearly established that stress-induced martensitic
form of these alloys. Contrary, polycrystalline forms transformations can significantly enhance tensile duc-
of these materials are generally brittle and fail in ten-tility and fracture toughness of Zg@nd various ceram-
sion at strains less than 3%. While single-crystal propics containing ZrQ@ as the second phase (e.g. [3]), as
erties are quite attractive, a wide-scale application ofvell as of ultra-high strength secondary-hardened steels
the single crystalline form of these alloys is cost pro-(e.g. [4]). The fundamental basis for comprehending the
hibitive. Consequently, over the last decade, there haghenomenon of martensitic transformation—enhanced
been a great deal of research effort aimed at identifyingluctility and toughness resides in the thermodynamics
and incorporating various means of the improvementnd associated kinetics of the stress-assisted transfor-
of tensile ductility and fracture toughness in conven-mation. A materials constitutive model, which is based
tionally processed polycrystalling-TiAl + a,-TizAl onthe thermodynamics and the kinetics of deformation-
based materials. One of the very promising approachesduced martensitic transformation, has been recently
for the enhancement of ductility and toughness isproposed by Grujicic and Sankaran [5, 6]. The model
the introduction of ductile grain-boundary precipitates,describes transformation plasticity accompanying
which assist the accommodation of the plastic flow in-stress-assisted martensitic transformation in metastable
compatibilities across the grain boundaries caused bparticles embedded into a stable non-transforming
an insufficient number of slip systems in the matrix matrix. Grujicic and Sankaran subsequently used a
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continuum composite approximation to analyse the2. Experimental

material system consisting of metastable Ti—Al-V-2.1. Materials constitutive relations

Fe based b.c.c. beta phase particles embedded infthe deformation behaviour of the three crystalline
the lamellary + a> titanium aluminide matrix. Within  phases (gamma, alpha-2 and beta) encountered in
the continuum composite approximation, each materiathe present case is represented using the formulation
point is considered to consist of fixed volume fractionsof the elastic—viscoplastic crystalline slip constitutive
of y, ez andB. This approach allowed determination of theory developed by Pieres al.[10, 11]. Within this

the effect of transformation-controlled plasticity in the theory, the Kirchhoff stres$, is chosen as a suitable
beta phase on the stress and displacement fields in tleeasure of the stress state and the stress—strain relation
crack-tip region as well as in the necking region wheren the rate form is expressed as

the strain is being localized. The continuum compos-

ite approximation, however, does not allow a study of T= Lé(D — DP) (1)

the role of incompatibility in the plastic flow across the

matrix grain boundaries on intergranular cracking andyhere the Jaumann derivative of the Kirchhoff stress,
fracture. In a recent study Gruijicic and Zhang [7] car-f is given as

ried out a crystal plasticity finite element analysis of de-

formation and fracture of a-TiAl 4 a2-TizAl material =T —WT +TW 2)
containing 10 vol % of either stable (non-transforming)

or metastable (transforming) beta phase precipitates IoF is the material derivative of the Kirchhoff stress and
cated atthe three-grain junctions. This analysis revealed the total (crystal) spin tensor. To simplify the calcu-
the beneficial effects of the ductile beta phase in accomiation, the fourth-order elasticity tensdr?, is taken in
modating the incompatibility in plastic deformation be- the present work to be equal to the one for the linear
tween the adjacent matrix grain. It also showed that, dugotropic materials in the form

to lattice expansion associated with the transformation,
metastable beta phase precipitates delay the onset on
grain boundary decohesion thus further enhancing ten-
sile ductility.

In the present work, the crystal plasticity analysiswherel is the fourth-order identity tensdrthe second-
carried out by Grujicic and Zhang [7] is extended to Order identity tensoiG the elastic shear modulus and
elucidate further the mechanism by which both stableB the elastic bulk modulusD and DP in Equation 1
and metastable beta phase grain boundary precipitat@€ the total stretching tensor and the plastic stretching
enhance ductility and fracture toughness of the lamellatensor, respectively.
¥ + as titanium aluminide. The analysis is carried out  The plastic stretching tensddP, as defined by the
using the commercial finite element code ABAQUS [8]. crystalline plasticity theory (e.g. [12]) is given by
The cohesion-zone type potentials [9] for the matrix
grain boundaries and the matrix—precipitate interfaces K,
are determined using the atomistic simulation (molec- DP = Z y*R* (4)
ular statics) analysis and subsequently used to derive a=1

the corresponding (continuum-type) grain boundary— o . . : .
interface e?ementg étiffness mat%g )9 y wherey* is the shear strain rate associated with slip

Notation used in the present paper is based on th sten, and'K is the total numper of slip systems, and
following conventions: scalars are written in regulart e symmetric traceless Schmid tensef, is defined

type (e.g.f, y, o), vectors using boldface lowercase as
Roman, (e.ge, t), second-order tensors as boldface 1
uppercase (e.dt, D), while fourth-order tensors use R* = -{" ® n* + n* ® "} (5)
capital boldface italics (e.¢, J). Tensor (dyadic) prod- 2
ucts are indicated bw, tensor scalar products of ap- \\heres® andn®
propriate order by. The norm and the transpose of
a second-order tensér are denoted byA| andAT,
respectively.

The organization of the paper is as follows. The
materials constitutive relations for the matrix phase
and the precipitate (dispersed) phase are discussed in pe =y —
Section 2.1. The atomic-scale procedure used for cal- g*
culation of the grain boundary and interface potentials o _
is presented in Section 2.2. The details of the finite elWhereyg' is the reference shear strain rat¢, the rate
ement method used and its implementation as well a§xponent (inverse of the shear rate sensitivity coeffi-
the procedure for determination of the stiffness matrixcient) andg” the strength of slip system The resolved
of the grain boundary—interface finite elements are preshear stress on slip systemz*, is given as
sented in Section 2.3. In Section 3, the main results of

Le=ZG(I —%I®I>+B(I®I) A3)

are, respectively, the slip direction and

the slip plane normal corresponding to slip system
The shear strain rate associated with slip systém

given as

o m*—1

T

s (6)

the present work are presented and discussed. The main =T xR* (7)
conclusions drawn from the present study are given in
Section 4. whereT’ is the deviatoric part of the Kirchhoff stress.
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The slip system strength®, evolves with deforma- with v, 6 and ¢ being the Euler angles relating the
tion as global co-ordinate system and the one defined by the
¢ crystal axes.

o =g+ [ ot ®)
° 2.1.1. Matrix material
wheregg is the initial slip system strength aridhe  As discussed earlier, the alloys studies in the present
time. The hardening ratg®, is defined as work consist of the matrix (composed of parallel lamel-
lae of y-TiAl and «»-TizAl) and dispersed particles
i K b B of the beta phase. A finite element analysis of poly-
g = Z h* 1yl ©) crystalline material consisting of parallglTiAl and
p=1 a-TizAl lamellae as the matrix and dispersed beta
hase in the form of particles requires the use of a suf-
iciently fine mesh. A three-dimensional finite element
analysis of this material would entail prohibitively large
gamounts of computer memory and computer process-
ing unit (CPU) time and, consequently, in the present

whereh®? is the hardening modulus whose component
show the effect of shear on slip syst@gmn the strength
of slip systemu.

Substitution of Equations 5 and 6 into Equation

ield ; . ) N .
ylelds work, only a two-dimensional idealization of this prob-
K [ T/ xRY|T x R¢|™ 1 lem, analogous to that developed by Ketdil.[14], is
DP =" (1 — - RY (10) pursued.
a=1 g 9 As stated earlier, the matrix consists of parajtel

. . TiAl and a»-TizAl lamellae with the orientation re-
Using the relationA x B)C=(C® A) B, whereA, B lationship: 0001),,[1{111}, and(1120),,[(110),
and(_: are all second-order tensors, Equation 10 can bgnq the lamellae interfacd® 0 01),,[{111},. In the
rewritten as two-dimensional plane strain finite element analysis

carried out in the present work, the three-dimensional
RY ® Roc) T crystal slip is replaced by its two-dimensional projec-
tion onto the (21),({1010,, plane. As shown by
(11) Kadet al.[14], such in-plane slip is controlled by three
slip systems: (a) the projectédi1 0](111), slip sys-
The total (crystal) spinW, can be additively decom- tem, which is char'acterized by a relatively small ini-
posed as the sum of plastic spiP, and the lattice tial value of the slip strengthgf =40-60 MPa); and
spin,W* [13] as (b_) and (c) two prOJected (12[1)[_1 12 6],, pyramidal
slip systems, which are substantially hardgr£ 500—
W = WP + W* (12)  700MPa). As shown in Fig. 1a, the slip directions cor-
responding to these three slip systems designated as
In accordance with the crystal plasticity theory Si» S, and g form an isosceles triangle with an angle
(e.g. [12]), the plastic spin is given as ¢ =58 between the soft and the hard slip systems.
To simplify the computation, the matrix has been
K treated as a single phase, consisting of a continuum
WP = Z yOAY (13) mixture of y and oy (the continuum composite ap-
a1 proximation), but its plastic behaviour is taken to be
controlled by thg110](1 1 1) slip iny-TiAl (slip sys-
whereA“ is the skew part of the Schmid tensor associ-tem 1) and by two projected (1211)[1 12 6] slip sys-
ated with slip systery and is defined as tems ofa,-TizAl (slip systems 2 and 3). The initial slip
strengths are set to the following valugg:= 50 MPa,
g5 = g3 =600 MPa. These values are consistent with
the lamellar-TiAl 4+ a2-TizAl material, having an av-
erage grain size of 100m and a lamellar thickness of
The lattice spin causes rotation of the crystal lattice2.5,,m. The hardening is taken to be linear and the ef-
Following Asaro and Rice [13], the rate of the changefect of the latent hardening is neglectég (= 0,1 # j).
of the orientation of crystal lattice can be expressed agollowing Kadet al.[14] the non-zero elements of the
hardening matrixy;; , are setas follows1;; = 150 MPa

m* —1

T x R*
gO{

K 1
DP = Z ()'/gg—a
a=1

M=%w®m—m®§} (14)

C =W*C (15) andhyy=hs3=1500 MPa. Furthermore, the slip sys-
tem parameterg;” and n¥ defined in Equation 6, are
whereC is the lattice orientation matrix given as set as Ix 1073 and 11, respectively.

COSYr COS¢ — Sinyr cosH Sing siny cos¢ + cosyr cosd sing  sind sing
C = | —cosy sing — siny cosf cos¢p  —siny Sing + cosyr cosH Cos¢p SN cosp (16)
sinyr sing —Ccosyr sing cosf
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Figure 1 The projected slip systems used in the two-dimensional finite element analysis of faltAéplus a,-TizAl matrix, and (b) beta phase
precipitates.

2.1.2. Dispersed phase only shear but also dilation. This was done as follows:

2.1.2.1. Stable beta phas€he stable beta phase dis- First, it is recognized that the plastic stretching tensor

persed in the form of fine particles has b.c.c. crystadefined in Equations 4, 10 or 11 is, in fact, purely de-

structure in which slip occurs ifl 1 1) directions on  viatoric (D). Due to the aforementioned coupling be-

{110, {112 and{12 3 planes. The in-plane slip in tween the transformation shear and the transformation

this phase is simplified as follows: The fo(ir1 1) di-  shuffling, the hydrostatic part of the plastic stretching,

rections are projected on an arbitrary plane associate@}, is defined as

with the [0 0 1] zone axis resulting in four slip systems

S1, 2, S3 ands,. The Miller indices of this plane (7 30) > 12

are generated using the random number generator. The DE - f(gp)<_Dp/ « Dp/) | (17)

angles between these four slip systems, givenin Fig. 1b, 3

are kept fixed for all beta phase particles. However, the

orientation of each particle is made different by selectwhere the functionf (sP), as defined by Gruijicic

ing the Euler angleyr, in a random fashion. Following and Sankaran [5, 6], takes into account the fact that

Grujicic and Sankaran [5, 6] the parameters appeamartensitic transformation initially dominates plastic

ing in the constitutive model of the stable beta phasdehaviour, while at larger levels of equivalent plastic

are chosen ag;¥’=1x 1073, m* =11,g§ =85MPa, strain,sP, the crystal slip becomes the dominant mode

h{ = 1500 MPa andhj =0 (fori # j). of deformation. According to Grujicic and Sankaran
[5, 6], for the Ti—V—Al based beta phase, the function

f (¢P) can be defined as
2.1.2.2. Metastable beta phaskhe metastable beta

phase undergoes a b.c-e.hexagonal close packed 2
(h.c.p.) martensitic transformation under stress. Ac-f (gP) = {15'10553 — 155G + 0.040 & < 0.048
cording to Burgers [15], the b.c.e» h.c.p. martensitic P > 0.048
transformation can be described in terms of two el- (18)
emental processes: (a) shuffling of parallel adjacent

(110) planes in the opposite 110] direction, and (b)
pure shear on th¢l 12 planes in the(111) direc-
tion. The shuffling produces the required h.c.p.-typ
ABAB stacking of the close packe@ 00 1), p'?‘“es. fc,tages, the elements of the hardening matrix are defined
and causes a volume change, but does not give rise (X [5, 6]

shear. The transformation shear, on other hand, con-~ "™’
verts the irregular hexagonal atomic arrangement in , ,

the (110).c planes into regular hexagonal atomic hif (y®) = —16180349™ + 2586213/“
arrangement in the close packel0( 1),c,. planes.

Since for the b.c.c> h.c.p. transformatign to take —89884" — 1802 (x10°)  (19a)
place both shuffling and pure shear have to occur, and
the shear directiongl 11) are the same as those for and
slip, the b.c.c— h.c.p. transformation is modelled in

the present work as crystal slip, which produces not hfj 9 =0 fori # j (19b)

In order to account for dynamic softening, which dom-
inates transformation in its early stages, and static
ardening, which dominates transformation in its later
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wherey® is the accumulated shear strain associatedvhere the parametetsnax and tmax are, respectively,
with slip systemu. the normal and tangential interfacial strengths, &nd
Following Grujicic and Sankaran [5, 6], the remain- and & are the corresponding characteristic interface
ing parameters appearing in the constitutive relationdengths. Differentiation of Equation 22 with respect to
for the metastable beta phase are seg@s: 75 MPa l_Jn andU, yields the expressions for the interfacial trac-
7 =1x 103 and n¥ = 11. tions
The uniaxial stress—strain behaviour of the
metastable and the stable beta phase as well as that F (u, U) = {emnax
of the matrix phase obtained using the constitutive

relations developed in this section is shown and 1 5 U, Up
discussed in Section 3. — —Tmax— l0g | cosh| 2— —e
2 M, St Sn
(23)
2.2. Grain boundary-interface constitutive u _un U
relations Fe(Un, Uy) = [rmaxtanh<28—:>} [e n <1+ 8_t”>]
2.2.1. Cohesive zone model (24)

The matrix grain boundary and precipitate—matrix in-
terfaces have been modelled using the cohesive zone . . , .
framework originally introduced by Needleman [9]. Graphlca] representatlor_l of_the @wo _funcnons defined
The cohesive zone is assumed to have a negligible thicky Equations 23 and 24 is given in Fig. 2.

ness when compared with other characteristic lengths of I Fn given by Equation 23 is expressed for the case
the problem, such as the grain boundary—interface edg® Purely normal interface decohesion, and #efor
length, typical lengths associated with the gradient ofNe case of pure sliding, one obtains

the fields, etc. The mechanical behaviour of the cohe-

sive zone is characterized by a traction—displacement U o

relation, which is introduced through the definition of Fn(Un, Uy = 0) = F2(U,) = egmax<_esn">

an interface potential. Stable equilibrium for the Sn

grain boundary—interface corresponds to a perfectly (25)
bonded configuration, where the potential has a min- Y

imum and all tractions vanish. For any other config- _ ) _ t

uration, the value of the potential is taken to depend Fi(Un =0, U = iUy = Tmaxtanh<25_t> (26)
only on the displacement jump across the interface.

For the two-dimensional problem at hand, the interfacénspection of Equations 25 and 26 shows that the grain
displacement jump is expressed in terms of its normaboundary—interface behaviour is characterized by four
componentl,, and a tangential componehk, where  parameterSomax, Sn, Tmax and d;; where omax is the
both components lie in the-y plane of the Cartesian
co-ordinate system.

_ Differentiating the interface potential functioh =

W (U, Up) with respecttdJ, andU; yields, respectively,

the normal and tangential component$othe traction

per unit grain boundary—interface area in the deformed o
configuration Fo/Omax 06
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The interface constitutive relations are thus fully de-

fined by specifying the form for the interface potential R
function W(Uy, Uy) RSN EN
n, Up). 1 RS
- i i initi 03 eSS
The interface potential of the following form initially . 08 RS \
. . * SRR RIREATERERI E
proposed by Socrate [16], is used in the present study = " i.',','n’:}:@iii{it::{%{i{%:%:;:::::- s
- % LR g
i
0553 L ssessessy 1
1.667 L e S
I a5’ REkErs s UMY
3.333 i
W (Un, Up) = | —€0maxdn U5, e

1 Ut _Un Un
+ éfmaXSt log |:COSh<25_)i|} [e " <1+ 5_>] Figure 2 Normal and tangential components of the traction per unit

t n interface area, as a function of the normalized nortda}s,, and tan-
(22) gential,U;/8;, components of the interface displacements.
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peak normal traction for purely normal interface de-b.c.c. phase, the energy minimization procedure yielded
cohesiong, as the normal interface separation; whichthe lattice parameteas = 0.3186 nm, which is in rea-
corresponds to this peak tractiag;ax as an asymptotic sonable agreement with its experimental counterpart
shear traction for interface sliding; adihs a character- (0.322 nm) [22].
istic length in pure sliding, which corresponds to a shear
traction within 1%cmax(F(8) = 0.99tmay). Thesefour  2.2.2.1. Computation of grain boundary—interface
parameters are determined inthe presentwork as afungtructure. The equilibrium structure of the grain bound-
tion of the grain—grain and grain—precipitate misorien-aries and interfaces at 0 K is determined by minimizing
tation and the grain boundal‘y—intel‘face orientation USthe potentia| energy of each bicrysta|s using the Conju_
ing a molecular statics approach, which is described ijyate gradient method under flexible periodic boundary
the next section. conditions in two directions parallel to the interface
and the free surface boundary conditions in the direc-
tion normal to the interface. The use of the free surface
2.2.2. Atomic-scale analysis of grain boundary conditions allows the spacing of the planes
boundaries and interfaces parallel to and near the interface to adjust to the dif-
Becausey-TiAl is the dominant phase in the matrix ferences in the atomic environment. The equilibrium
material, the atomic simulation analysis is applied toatomistic configuration for the gamma-beta interface
the gamma-gamma grain boundaries and gamma-begarresponding to the bicrystal, given in Fig. 3, is shown
interfaces. To analyse any particular grain boundary ofn Fig. 4. As indicated in Fig. 4c, the interface structure
interface, a gamma—gamma or gamma-beta atomistigan be described in terms of two arrays of parallel dislo-
bicrystal is first constructed with the corresponding ori-cations marked D1 and D2. The Burger’s vector for the
entations of the two crystals and the boundary—interfacewo arrays has been determinedgg= 0.5a5[0 0 1],
separating the crystals. An example of the gamma-betgy,, = 0.086a5[7 7 6], and the corresponding disloca-
atomistic crystal is given in Fig. 3. The edge lengths oftion spacing.pi = 3.5a5 andip, = 1.81ag.
the single crystals are expressed in terms of the num-

ber of interplanar spacingf. . of the v w)planes. 5 5 5 5 computation of interface—grain boundary de-
The atomic interactions are accounted for through the s hesion potentialThe interface decohesion potential

use of the embedded atom method (EAM) interatomigq, each of the four bicrystals is determined by first
potential [17]. These potentials for the Ti-Al-V sys- i5iq|y displacing the two single crystals in each case in
tem at hand have been derived and extensively testegh | and tangential directions by different amounts.
by Grujicic and Dang [18, 19]. o . The potential energy of the bicrystals is next minimized

Prior to forming the bicrystals, the equilibrium lattice \,nqer the constraint that the average displacements of
parameters at OK in each phase are determined by Cafse atoms in the interface planes in each of the two
rying out the potential energy minimization (the mOIeC'joined crystals remain equal to the imposed rigid—body
ular static_method) in c_each single crystal through the USRisplacements. The difference between the energies of
of the conjugate gradient method [20]. Forthe Al ¢ picrystal in the displaced configuration and in the
gamma phase, the following lattice parameters are obsqjilibrium configuration expressed per unit area of the
tained:a, = 0.3944 nm and, = 0.4010 nm, resulting  45in houndary—interface is then defined as the value of
inac, /a){ ratio of 1.05, which is in fair agreement with },4 grain boundary—interface decohesion potential,
its experimental counterpas} /a, = 1.03 [21]. at the given values dfi, andUL.

The beta phase with 15 at% Vis choseninthe present g, the gamma-—beta interface shown in Fig. 4 and for
work because it was found previously [2] that at thisne normal separation in the 1 1], |[1 1 0 direction
level of vanadium, the b.c.c. structure is generally staz 4 tangential displacement in thel[al, [[[0 0 1]5 di-
ble and can undergo martensitic transformation Onlyi”rection, the following interfacial paraymeters are ob-
the presence of high stress, such as the one encolflined: omax=7.29 GPa, 8, =0.09 NM, Tyac=1.20
tered in the vicinity of a sharp crack. For the Ti-15V GPa ands, = 0.33nm. It should be noted that due to

the periodic nature of the interface structure, atomistic
28 dony sjmulatipn analysis predi(;ts a periodic interface poten-
izﬁs tial relative to the tangential displacements. To comply
with the form of the interface potential given by Equa-
y={Tiol; tion 22, only the portion of the atomistic simulation
results that show an increasegfwith U; is used and

11 d(]](})ﬁ

2880
atoms

x=[001ls  fitted using Equation 22.
18 d(110p & gEq
z=[110]p

\\\

1By / 2.3. Polycrystalline finite element method
2.3.1. Finite element mesh
¥ 15 daiy x=[0T1], To analyse the polycrystalline behaviour of the material
at hand, a finite element mesh consisting of 971 quadri-
lateral and 364 triangular elements is used in the present

Figure 3 Schematic representation of the beta/gamma bicrystal used foWOrk and is shown Fig. 5a. The mesh is partitioned into
determination of the (119)(211), interfacial decohesion potential. 27 equiaxed (hexagonal) matrix grains, Fig. 5b, and 27

(111,

32 d(ozzw z=[2ﬁ]y
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Figure 4 Equilibrium configuration of the (10)s/(211), interface: (a) atomic positions projected onto tAd Q)s/(111), plane, (b) atomic

positions projected onto th8Q1)/(0 Il)y plane, and (c) atomic positions projected onto th@(QJ,g/(Z Il)y interface plane. Interfacial dislocations
are marked as Dand Dp.

matrix grains and 56 equiaxed (hexagonal) precipitateand not to contain any lattice perturbations. The two-
located at matrix—three-grain junctions, Fig. 5¢c. Thephase polycrystalline aggregates defined in Fig. 5b and
configuration shown in Fig. 5¢ corresponds to approx- are loaded in thg-direction, while constraining the
imately 10 vol % of the precipitate phase. As discussedour straight edges of the aggregates to remain straight
in the previous section, the matrix grain boundaries anénd parallel to their original orientation with no strain
the matrix—precipitate phase interfaces are modelled udeing allowed in the-direction. While the aggregates
ing the cohesive zone approach. The initial orientatiorpossess no special symmetry and are not expected to
(the Euler angley, in degrees) of the matrix grains deform in the enforced orthotropic manner, each ag-
and the beta phase precipitates is indicated in Fig. S5gregate is treated here as a “material point” and ac-
and c. The grain numbers and precipitate numbers areording to the Taylor assumption its deformation gra-
also indicated in Fig. 5b and c, respectively. The initialdient is assumed to be equal to the global deformation
(reference) configuration is assumed to be stress fregradient.
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Figure 5 (a) The finite element mesh consisting of 971 quadrilateral and 364 triangular elements, (b) the polycrystalline reference configuration
consisting of 27 matrix grains and (c) of 27 matrix grains and 56 precipitates located at three-grain junctions (the numbers represent the grain numbe
and the magnitude of the grain’s Euler angle in degrees), (d) the finite element mesh consisting of 1338 quadrilateral and 28 triangular elements,
and (e) the polycrystalline reference configuration consisting of three matrix grains and (f) of three matrix grains with a precipitate located at the
three-grain junction. The rectangular region marked in (a) corresponds to the region shown in (d)—(f).

Based on the results obtained for the two—phase polytriangular elements, Fig. 5d, and partitioned either into
crystalline aggregate, the rectangular region marked ughree matrix grains, Fig. 5e, or into three matrix grains
ing dashed lines in Fig. 5a is selected for further studyand one precipitate, Fig. 5f. The loading in this case
This region is divided into 1338 quadrilateral and 28is applied by assigning the displacement history to the
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boundary of the aggregates shown in Fig. 5e and f to bare known, the first two terms on the right-hand side of
identical to that of the corresponding rectangular regiorEquation 32 are known. The third term can be obtained
marked in Fig. 5a. by multiplying Equation 11 byAtL®.
Combining Equations 32 and 11, and taking ad-
vantage of the fact thaR” is traceless, and hence

2.3.2. Implementation into the finite Th x R=0, whereTy, is the hydrostatic stress tensor
element method code ABAQUS (T=Th+T), yields

2.3.2.1. Integration of material stat&he materials

constitutive model defined in Section 2.1 has been in-

corporated into the finite element method (FEM) code T = To + L° |:A8

ABAQUS [8]. This code gives the user the flexibility

of specifying a constitutive law through a “user mate-

K o |m*—1
rial” subroutine, UMAT. The user is provided with the — At Z <Jygg% TxRY RY ® Ra)T
values of the stress and all user-defined state variables a=1 g%
at the beginning of the time step. The increment in total (33)

strain is also provided as an estimate of the kinematic
solution. The user must update the stress tensor ar]g R
the state variables based on this estimate. In additior{he b
when a boundary value problem is being solved usingg/

andg® are taken to be equal to their values at
eginning of the time step, Equation 33 represents
system of six non-linear algebraic equations with six

the finite element method, a knowledge of the materia nknown Kirchhoff stress components. In the present

qacobian f_or each Gaussian integration point at €aclork, this system of equations was solved using the
time step is required to evaluate the element’s St'ff'lll\/ISL’ subroutine, HYBRJ [23]

ness matrix, the user must also evaluate the materia Oncethe stress components are calculated, the plastic

Jacobian. Evaluation of the material Jacobian for thestretchingDp the plastic spifW? and the increments
present constltutlve _mod_el by a numerlt_:al |r_1tegrat_|onin plastic strr,;lin tensorAsP, can be evaluated using
of the material state is briefly discussed in this SeCt'OnEquations 11 13 and 31 réspectively

I the Klrchho_ff stress tensor at time{the beginning For the case of the metastable beta phase, Equation 33
of atime step) iF o, the updated stress tensor at a new.

: X . . is expressed in terms of deviatoric stresses and devia-
time,t + At (the end of the time step), is then given by toric r;train and solved. Next, Equation 17 is used to

evaluate the hydrostatic part of plastic stretching, and

T=To+ AT (27) the stress updated using the relations

The increment in stresa T, can be defined as the in-
tegral of the Jaumann stress rate tensor and is given

by

T=To+L*[As — At(D” + D})]  (34)

Next the slip system strength®, and the lattice ori-
t+ At entation matrix are updated as follows. Equation 8 is
AT = / T dt (28)  replaced with its Euler backwards differencing equiva-
t lent

Equation 28 can be evaluated numerically using the

generalized trapezoidal rule g% =go + 9" At (35)

whereg® can be expressed by combining Equations 6,
AT = n'YAt +(1- n)'FoAt O=<n=<1) (29 < andg P y C

In the present worly was set to one, which reduces K T x REI™
the trapezoidal rule to the Euler backwards difference g* = Z h“ﬂj/(f — 5 (36)
method. p=1 g
By combining Equations 27, 28 and 1, the updated
stress tensor is now expressed as After combining Equations 35 and 36, one obtains a
system ofK non-linear algebraic equations wikhun-
T =To+ AtL®(D) — AtL®(DP) (30)  knowng®s, whichis readily solved using the subroutine
HYBRJ [23].
After introducing the total strain incrememg The lattice orientation matri>xC, is updated by inte-
grating Equation 15 to yield
Ae = DAt (32)
C = expW™AL)Cy (37)

Equation 30 can be rewritten as
whereC andCy are the lattice orientation matrices at
T=To+ L°Aes — AtL®(DP) (32) the end and the beginning of the time step, respectively.
The lattice spinW*, is determined by subtracting from
Since both the stresstensor atthe beginning of time stephe total crystal spinW (passed into the UMAT sub-
To, and the total strain increment for the time stap,  routine) the plastic spinj/P.
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2.3.2.2. Computation of material Jacobiahhe mate-

rial Jacobian,], is a fourth-order tensor that represents y
the rate of change in the increment of the Kirchhoff
stress, AT, with respect to a virtual change in the in-
crementin strainAe. Thus

matrix
or
precipitate

dAT
J=

~ dAs (38)

Using Equation 16 and the fact thig is a constant for
the current time increment and using Equation 27, the
material Jacobian can be written as

dT /

= 39 /
dAe (39) /
/
/
Substitution of Equation 33 into Equation 39 yields 74_/
/ 6 X
_ d To+ Lel Ae Figure 6 Definition of the linear, four-node interface element. Nodes 1
- dAe 0 and 4 and nodes 2 and 3 coincide in the equilibrium (reference) con-
figuration. Internal nodes A and B located at the midpoints of segments
K 11T x RY m* —1 connected corresponding nodes in the beta and gamma sides of the in-
— At Z )-/a el X REQRY|T terface, two integration points marked-asand a local t-n co-ordinate
0 o o system are also indicated.
N9 g
o=

(40)
The interface displacements at the internal nodes A
gand B are expressed in terms of the displacements of

The differentiation indicated in Equation 40 is carrie
e element nodes 1-4

outusing the componentrepresentation of the stress art
the strain increment. The procedure is straightforward;
however, the final expression for the material Jacobian Up =
components are very lengthy and are not given here. A | o _

( <) sind  (41a)
1
detailed derivation of the material Jacobian is given by vt (
(
(

u
Uy —Ug)cosd  (41b)
Zhang [24]. UuB =

uy)
uy)
UZ)cosd — (U —UZ)sing  (41c)
uy)

<w <Kw <¥<p <p

X
H 3 2
2.3.2.3. Derivation of the interface element stiffness sing — (Uy — Uy) cos? (41d)

matrix. The grain boundary—interface decohesion po- . ) . , ,

tentials developed in Section 2.2 are incorporated intd\" iSoparametric co-ordinate;, is next introduced
the UEL subroutine of ABAQUS to define the stiffness @0ng the tangent direction witm(A)=—-1 and
matrix of the interfacial elements. The UEL subroutine”(B)=1 and two linear Langrangian interpola-
allows the user to define the contribution of the interfa-iion functions are defined asafh) =(1-n»)/2 and

cial (continuum) elements to the global finite eIementNB(”) = (1+ ’7)/2_- ] )

model. In other words, for the given nodal displace- 1he interpolation functions given above allow the
ments of the interface elements provided to UEL bynprmal and the tangential components of the |r_1terface
ABAQUS, the contribution of the interfacial elements dlsplapements to be expressed in the form of their values
to the global vector of residual forces and to the globaft the internal nodes A and B

Jacobian (element stiffness matrix) is determined in the A B

UEL subroutine and passed to ABAQUS. The imple- Un(n) = Na(n)Up' + Ne(n)Uy (42a)
mentation of the interface decohesion potential in the _ A B

UEL subroutine is discussed below. Un(n) = Na(iUn’ +Ne (iU (42b)

. Each mterface element is defined as a four-nod_eThe tangential and normal components of the forces at
isoparametric element on the gamma-gamma graif}, jes A and B i.eEA, FB, FA, F2, which are work
7 I 1 ’ n:? n:

boundary or the beta-gamma interface S, as Shov"E‘on'u ates of the corresponding nodal displacements
schematically in Fig. 6. In the undeformed configura- g P d P

UA, UB, UL andUB, are next determined through the

tion (not shown for brevity), nodes 1 and 4, and nodes, i ation of virtual work to the interfacial element
2 and 3 coincide, respectively. A local co-ordinate sys-

tem, consistent with directions that are tangent (t) and 1

normal (n) to the interface, is next assigned to the / sd(n)L dy = Z Z FNsUN (43)
each element. This is done by introducing two “inter- -1 I=ntN=A,B

nal nodes”, A and B, located at the midpoints of the

lines 1-2 and 3—4, connecting the corresponding graiwhere L is the A-B element length. The perturba-
boundary—interface nodes of the two grains. tion of interface potential is expressed in terms of the
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perturbations of the interface displacements at the in 600
ternal nodes A and BJ#, U8, U» andu®

500
_ BQD[Ut(anJ, Un(n)] [NA(U)aUrI:\ 4 NB(n)BUnB]

d®[Ui(n), Un(n)]
Uy

5P

400+

[Na()dU{ + N (n)aU?]

(44) 3004

By substituting Equation 44 into Equation 43 and by
choosing one of théUN (N=A, B; | =t, n) perturba-
tions at a time to be unity and the remaining perturba-
tions to be zero, the correspondifg' component of

200+

Uniaxial Stess, MPa

Refs. [5,6] Present work

0 *—e matrix ]
the nodal force can be expressed as 10 -  ——— sublepphse
1 ®---®  ----- metastable § phase
dP[Ut(n), Un(n)]
N —_— C 1 ] 1 T 1 1 1 T 1
R = /_1 U, Nn(Ldn — (45) o 1 2 4 g8 9 10

3 5 6 7
Uniaxial Strain, %

US”?Q a stralghtfc_)rv\(ard geom_e_mcal procedure and_lm'Figure 7 Comparison of the uniaxial (plane-strain) stress—strain be-
posing the eCIU||Ibr|U_m Condltlon, the correspondinghaviour for the metastable and stable beta phase and for the matrix
residual nodal force@;( and R'y (i =1-4) inthe global phase calculated in the present work and measured by Gruijicic and
x—y co-ordinate system, are defined as Sankaran [5, 6].

1 4 A A o
Ry = —Ry=F"cosd — Fy'sing (462) plane in order to preserve the rectangular shape of the
R) = —R) = Fsing — Fcosy  (46b)  configuration. o . .

The resulting uniaxial (plane-strain) stress—strain
R =—R;=Fcos) — F7sind  (46¢c) curves for the three cases are shown in Fig. 7. For

2 D3 _ B B comparison the corresponding experimental results re-
Ry = —Ry = R’sind + Fy' coss (46d) ported by Grujicicand Sankaran [5, 6] are also included.
The components of the element Jacobian are next d(;r—he agreement between the two sets of result; can be
fined as considered as reasonable. The re;u_lts shown in Fig. 7

also clearly display the characteristic features of the

IR JRIENgUM three materials, such as:

e Y Y Y sl @)
W' FinSAejShim=as R 9U U, 1. The matrix phase has a relatively high value of
yield stress (approximately 400 MPa), but strain hard-
where the components of the internal Jacobiarens relatively slowly.
aFiN/an'V' (i, j=n, t; N, M=A, B) are calculated 2. The stable beta phase has a flow stress (approxi-
by differentiation of Equation 45. The residual nodal mately 200 MPa) that is approximately half of that of
forces given by Equation 46 and the element Jacobiathe matrix phase, but strain hardens at a significantly
given by Equation 47 are computed in the UEL sub-higher rate.
routine, and passed to ABAQUS for use in its global 3. The metastable beta phase has an even lower ini-
Newton scheme for accurate assessment of kinematicgal yield stress (approximately 160 MPa) and initially

strain hardens very slowly (the dynamic softening re-
gion dominated by the high rate of martensitic transfor-

3. Results and discussion mation acts as a deformation process). At the interme-

3.1. Polycrystalline tensile stress—strain diate levels of plastic strain, the hardening rate of the
relations metastable phase increases (the static hardening region

3.1.1. Single phase materials governed by higher flow stress levels of the transfor-

In this section, the polycrystalline tensile stress—strairmation product — martensite). At the later stages of de-
behaviour of the matrix phase and the stable and théormation when the transformation is near completion,
metastable forms of the beta phase are determined. T¢he stress—strain curve for the metastable beta phase
ward that end, the matrix phase and constitutive propapproaches that for the stable beta phase.

erties of the stable and the metastable beta phase ma-

terials discussed in Sections 2.1.1 and 2.1.2, are, in

turn, assigned to the 27-grain configuration shown in3.7.2. Two phase materials

Fig. 5b. In this set of calculations, the grain boundariedn this section, a polycrystalline aggregate consisting
are modelled as rigid. The configuration is stretchedf 27 matrix grains and 56 precipitates, Fig. 5c is used
in the y-direction and the plane-strain condition ap-to determine the plane-strain stress—strain relations for
plied in thez-direction. As discussed in Section 2.3.1, materials consisting of 10vol % of the stable or the
orthotropic-type constrains are also imposedindhg ~ metastable beta phase precipitates. The type of loading
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550 — T T T T T T T T The distributions of the equivalent plastic strain, the
change in the Euler angle and the hydrostatic stress for
the single-phase material at an overall axial strain of
2% are shown in Fig. 9a—c, respectively. The contour
plot given in Fig. 9a clearly shows a non-uniform dis-
tribution of the equivalent plastic strain. Furthermore,
the locatization of the strain into deformation bands at
1 approximatelyt+40° is apparent as indicated by the ar-
rows in Fig. 9a. The deformation bands were observed
at an overall strain of approximately 0.5% (the contour
plot is not shown for brevity) and they become more
pronounced as deformation proceeds.

In addition to non-uniformity in the distribution of
the equivalent plastic strain in the single-phase mate-
1 rial at the 27-grain configuration level, the distribution
of the equivalent strain is quite non-uniform within the
200 e — grains (single crystals) too. For example, within grains

0 05 1 15 2 25 3 35 4 45 5 55 6 1,10, 12 and 15 at the overall plastic strain of 2%,

Uniaxial Strain, % Fig. 9a, the strain varies between 1 and 7%. High gra-

Figure 8 The computed uniaxial stress—strain (plane-strain) relationsdlentS in the equwalent plastlc strain are pamCUIarly

using cohesive zone approximation: (A) matrix phase, (C) matrix phasepronounced in the regions near the grain boundaries
plus stable beta phase precipitate, (D) matrix phase plus metastable bef@.9. grain boundaries associated with grains 7 and 12
phase precipitate. and grains 7 and 13) and near the three-grain junctions
(e.g. 7-12-13 and 10-15-16 grain junctions).
The distribution of the change in Euler angle for the
single-phase material atan overall plastic strain of 2%is

and orthotropic constraints used in the previous sec? - i . .
tion are also utilized in this section. However, the grainShown in Fig. 9b. Counterclockwise lattice rotations are

boundaries and phase interfaces are modelled using tfiScribed as positive. A careful examination of Fig. 9b
cohesive zone approach. The results of this calculatio eveals thatthe largest rotations take place nearthe grain

are shown in Fig. 8. Curve B pertains to the case of th&0undaries (e.g. the ones between grains 12 and 13, and

o grains 13 and 18) and near the three-grain junctions
stable beta phase precipitates, whereas curve C pertaif&'NS
to the case of the metastable beta phase precipitates. & 9: 4-9-10, 5-10-11, 6-7-12, 7-12-13, 12-13-18,

comparison, the stress—strain curve for the single (mal3_18_r119' 16-21-22, .17_18_23’h 19-20-25 and 21~
trix) phase material is also shown in Fig. 8, Curve A. 26-27 three-grain junctions). Furthermore, a compari-

The results shown in Fig. 8 show that the singleson of the corresponding results shown in Fig. 9a and

phase material, Curve A, is harder than the two two-Ob suggests that the largest rotations take place within

; ; ; . the grains located in the deformation bands (e.g. grains
phase materials, but fails at a relatively small tensile _ e
strain of approximately 2.1%. The presence of stabl¢: 1° and 22, and grains 6, 13, 25 and 26). This is

beta phase precipitates increases the strain to fracture §9t SUTPrising S]'cn%e thg Iattlcfe rotations are a na’gjrt?l
approximately 4.5%, while the strain to fracture is ap-¢onseduence of the efiect ot constraints imposed by

proximately 5.2% for the case of metastable beta phas'® Poundary conditions and the surrounding grains on

precipitates. Dynamic softening causes Curve C to li¢'ystallographic shear within a crystal. Hence, the re-
below Curve B at lower strain values. However, due to910"S characterized by the largest levels of equivalent

the interplay of static hardening, the material containP!2StiC strain are generally expected to experience large

ing metastable beta phase precipitates hardens fasterrHtg‘gnitu_de_S of_the lattice rotation._ . :
later stages of deformation. The distribution of the hydrostatic stressin the single-

phase material throughout the 27-grain configuration at
an overall plastic strain of 2% is shown in Fig. 9c. This
figure clearly shows that hydrostatic stress is distributed
3.2. Deformation fields guite non-uniformly not only among the grains but also
3.2.1. Multigrain length scale within the grains. Specifically, grains, 5, 7, 12 and 26 are
3.2.1.1. Single phase materidh this section, the de- subject to tensile (positive) hydrostatic stresses, while
formation fields are shown and discussed for either théhe remaining grains experience both tensile and com-
27-grain single-phase aggregate, Fig. 5b, or for the 27pressive hydrostatic stresses. High magnitude hydro-
grain plus 56-precipitate two-phase aggregate, Fig. Sctatic stresses are generally concentrated near the grain
loaded in plane-strain tension. Specifically, the contouboundaries or near the three-grain junctions. In partic-

5004

Uniaxial Stress, MPa

93
(=3
T

250+

plots are shown for: ular, the three-grain junction associated with grains 7,

12 and 13 is characterized by a high gradient and large

1. The normal equivalent plastic strain; magnitudes of positive hydrostatic stress. Acomparison
2. The change in the Euler angle, whichisamea- of the results shown in Fig. 9¢c with the results shown

sure of two-dimensional lattice rotation; and in Fig. 9b suggests that the most probable cause for
3. hydrostatic stress. the observed high magnitude and high gradient of the
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Figure 9 Contour plots at an overall normal strain of 2% in the vertical direction of: (a) the normal equivalent plastic strain (in per cent), (b) the
changes in Euler angle (in degrees) and (c) the hydrostatic stress (in 100 MPa) for the single-phase (matrix) polycrystalline material in &hich the gr
boundaries are represented using the cohesive zone model, and (d), (e) and (f) are the corresponding contour plots for the two-phase (matrix plus

stable beta) material.

hydrostatic stress at the 7—-12—-13 three-grain junction istresses at the 10-15-16 three-grain junction, on the
incompatibility in the plastic deformation of the three one hand, appears to be associated with a large concen-
grains, which is manifested by a large variation in latticetration of the equivalent plastic strain in grain 15 near
rotations across the 7-13 and 12—13 grain boundariethe 10-15 grain boundary. In this grain, the slip direc-

A similar conclusion can be drawn regarding the origintion of the soft slip system (slip system 1, Fig. 1a is
of the high hydrostatic stress region near the 19-20—-2§uite unfavourably oriented/(= 167) relative to the
three-grain junction. The concentration of hydrostaticloading direction, which results in a small value of the
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Schmid factor. Hence, a large stress in the loading dithe mechanism by which beta phase precipitates in-
rection is required for plastic deformation to take placecrease the strain to fracture, the deformation fields
within grain 15 and is due to incompatibility in the de- within the 7-12-13 three-grain configuration, Fig. 5e,
formation of grains 10, 15 and 16 giving rise to large and the three-grain plus precipitate configuration, Fig.
hydrostatic stress near the three-grain junction. 5f, are examined in this section. As discussed in
Section 2.3.2, the two configurations are loaded by pre-
. o scribing the boundary displacements. These displace-
gdztjilv-:l.erT;NgIg:tizsestrrg?;er;ﬁghihda{igguigolgiIg]; tZﬁgleme_nts are identical to the one ot_Jtalned for the_ same
| ' . ! Tegions inthe 27-grain and 27-grain plus 56-precipitate
and the hydrostatic stress for the material contaln—a reqates. Fia. 5b. and c. respectivel
ing 10vol % stable beta phase precipitates at an oveP99re9 » 71990, - fesp Y-
all normal strain level of 2% are, respectively, shown
in Fig. 9d—f. A comparison of the results shown in 3.2.2.1. Single-phase materidthe distributions of
Fig. 9d—f with the corresponding results for the single-the equivalent plastic strain, the change in Euler angle
phase material, Fig. 9a—c, reveals the following: and hydrostatic stress in the single-(matrix-) phase ma-
terial at an overall strains of 1, 1.7 and 2.1% are shown

1. Non-uniformity in the distribution of the equiva- in Fig. 10a—i. For improved clarity only the innermost
lent palstic strain, Fig. 94, is still present and, in fact,hexagonal region centred at the three-grain junction is
the deformation bands in the approximately d@rec-  shown in this figure. The results shown in Fig. 10a—i,
tion appear to be even more pronounced relative to thean be summarized as follows:
single-phase material case, Fig. 9a.

2. The variation in the change of Euler angle, 1. Well defined shear bands nearly parallel to the 7—
Fig. 9e, is somewhat reduced in comparison with thatl2 grain boundary, characterized by large values of the
shown in Fig. 9b. For example, within grain 13 the rangeequivalent strain, are obtained in grain 12 at 1% of the
of the Euler angle is between 0 antli@ Fig. 9e, and overall normal strain. Fig. 10a. These bands tend to
between-2 and 2 in Fig. 9b. broaden within grain 12 with further deformation. In

3. The range of change in the Euler angle within theaddition, in the region within grain 13 near the 12—-13
beta phase precipitates (e.g. precipitate 24) lies genegrain boundary, where the shear band of grain 12 im-
ally between the corresponding ranges of the surroundsinges on this grain boundary, the equivalent plastic
ing grains (grains 7, 12 and 13). In this manner, thestrain is quite large, Fig. 10 a—c. This is an indication
precipitates assist the accommodation of plastic flowof the way the non-uniformity of the plastic flow prop-
incompatibilities between the adjacent grains. agates from one grain to the next, resulting in forma-

4. The non-uniformity in the distribution of the hy- tion of the macroscopic deformation bands observed in
drostatic stress, Fig. 9f, is generally similar to thatFig. 9a.
in Fig. 9c. However, many precipitates (e.g. precipi- 2. At 1.7% of the overall strain, Fig. 10b, a small
tates 24 and 27) are subject to a large tensile hydroerack forms at the three-grain junction and extends
static stress. This finding is consistent with the resultslightly along the 12-13 and 7-13 grain boundaries.
shown in Fig. 9c, in which the regions around the three-This reduces some of the constraints to the deforma-
grain junctions are generally characterized by a hightion of grain 7, causing it to undergo a large extent of
level of hydrostatic stress. However, it should be notedlastic deformation in the region near the three-grain
that, while the precipitates themselves are subject tgunction.

a high hydrostatic stress, in the matrix surrounding 3. The distribution of the change in Euler angle
them the stress level has been substantially reducedithin grian 12 has a band structure, Fig. 10d-e, in
This implies that the normal tractions acting on the ma-accordance with the shear bands shown in Fig. 10a—b.
trix grain boundaries and the precipitate—matrix inter- 4. Before nucleation of the crack at the three-grain
faces are lowered, which, as will be shown in the nexjunction, grain 7 undergoes positive lattice rotations in
section, delays the onset of grain boundary—interfacéhe region adjacent to the three-grain junction, Fig. 10d.
decohesion. However, when the crack forms, Fig. 10e, the part of
grain 7 adjacent to the three-grain junction is less con-
Atthe multigrain length scale for material containing strained and undergoes a negative lattice rotation.
10 vol % metastable beta phase precipitates, the contour 5. Hydrostatic stress in grain 12 is also distributed
plots for the equivalent plastic strain, the change in Euin the form of bands parallel to the 7-12 grain bound-
ler angle and the hydrostatic stress at an overall strain adry. Very large hydrostatic stresses are concentrated in
2% are very similar to the ones given in Fig. 9d—f and,the region surrounding the three-grain junction before
hence, are not shown here. However, as will be showgrain boundary decohesion occurs, Fig. 10g. However,
in next section, at a single—grain length scale noticeablence the crack forms, the hydrostatic stresses undergo
differences exist in the deformation fields between thea major relaxtion, Fig. 10h versus g. As the crack ad-
two cases. vances, the region in the crack wake becomes subject to
hydrostatic compression, Fig. 10i. The largest hydro-
static stresses generally remain ahead of the advancing
3.2.2. Single-grain length scale crack, Fig. 10h and i.
In order to understand better the conditions lead- 6. Just prior to nucleation of the crack, the hydro-
ing to fracture by grain boundary decohesion andstatic stress at the three-grain junction was found to
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Figure 10 Contour plots for the normal equivalent plastic strain (in per cent) for the single-phase (matrix) material at overall normal strains of
(a) 1, (b) 1.7 and (c) 2.1%. The corresponding contour plots for the change in Euler angle (in degrees) are shown in (d), (e) and (f). The corresponding
contour plots for the hydrostatic stress (in 100 MPa) are shown in (g), (h) and (i).

reach a maximum value of 1.28 GPa. This value isoverall strains of 1, 4.4 (the strain at which the crack
comparable with the grain 7—grain 13 normal interfacenucleates) and 4.8% (the strain to fracture) are shown
strength of 1.6 GPa. in Fig. 11a—i. The results can be summarized as:

3.2.2.2. Two-phase material containing stable beta 1. The presence of beta phase precipitates does not
phase precipitatesThe distributions of the equivalent lower the tendency for formation of shear bandsin grain
plastic strain, the change in Euler angle and hydrostati¢2, Fig. 11a—c versus, Fig. 10a—c. In fact, the region
stress in the configuration consisting of three graincontaining the shear bands is somewhat larger in the
and one precipitate of the stable beta phase. Fig. 5f, aivo-phase material than in the single-phase material.
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Figure 11 Contour plots for the normal equivalent plastic strain (in per cent) for the two-phase (matrix plus stable beta) material at overall normal
strains of (a) 1, (b) 4.4 and (c) 4.8%. The corresponding contour plots for the change in Euler angle (in degrees) are shown in (d), (e) and (f). The
corresponding contour plots for the hydrostatic stress (in 100 MPa) are shown in (g), (h) and (i).

2. The distribution of the equivalent plastic strain 4. The change in Euler angle within the precipitate
within the beta phase precipitate is quite non-uniform,is quite non-uniform, with the largest gradient in the
but does not display shear band behaviour. The large&uler angle change being located near the two grain—
magnitudes of the equivalent plastic strain within theprecipitate junction.
precipitate are found in the region near the grain 7—grain 5. After a crack nucleates at the grain 7—grain 12—
12—precipitate junction. precipitate junction at an overall plastic strain of 4.4%,

3. The distribution in the change in Euler angle Fig. 11e, the precipitate becomes less constrained and
within grain 12 shows band structure, Fig. 11d—f, whichthe gradient in the change in Euler angle near this junc-
is consistent with shear band structure, Fig. 11 a—c. tion within the precipitate diminishes, Fig. 11f.
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Figure 12 Contour plots for the normal equivalent plastic strain (in per cent) for the two-phase (matrix plus metastable beta) material at overall normal
strains of (a) 1, (b) 4.8 and (c) 5.3%. The corresponding contour plots for the change in Euler angle (in degrees) are shown in (d), (e) and (f). The
corresponding contour plots for the hydrostatic stress (in 100 MPa) are shown in (g), (h) and (i).

6. The presence of a precipitate generally lowers the 7. The precipitate is generally subject to large pos-
magnitude of the hydrostatic stress relative to that iritive hydrostatic stresses, with the largest values con-
the single-phase material at the same level of overakkentrated near the grain 7—grain 12—precipitate junc-
plastic strain, Fig. 119 versus Fig. 10g. tion, Fig 11g. Upon nucleation of the crack, the level
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of hydrostatic stress decreases sharply with the largesitydrostatic stress levels are found away from the afore-
positive stresses now residing in the region in front ofmentioned junction, Fig. 12g. This can be attributed to
the crack tip, Fig. 11h, i. The regions in the crack wakethe fact that very extensive plastic deformation, which
undergo stress reversal and become subject to negatitakes place in the region next to the junction, Fig. 12a,
hydrostatic stress, Fig. 11i. is dominated by the martensitic transformation, which
8. The peak value in hydrostatic stress, just prioris associated with lattice expansion, causing relaxation
to nucleation of the crack, was found to be 1.39 GPapf the hydrostatic stress. This also explains why nucle-
which is comparable with the grain 12—precipitate in-ation of the crack at the grain 7—grain 12—precipitate
terface normal strength of 1.65 GPa. junction is delayed in the case of the metastable beta
9. The overall normal plastic increment between thephase precipitate.
nucleation point of the crack 4.4%, and final failure, 4. Nucleation of the crack is found to take place at a
4.8%, is effectively the same as the correspondingeak hydrostatic stress of 1.4 GPa, which is practically
range (1.7 and 2.1%) in the single-phase material.  identical to that for the stable beta phase precipitate.
This finding is reasonable since the same grain bound-

ary and interface potentials are used for both the ma-

S.ezt:-%al\évo-rgzﬁsi; tezg'arfgrcli?étr(i:l;?;glr?slno% trrlre] eéaijSPleterial containing a stable and the material containing a
P precip ' q metastable beta phase precipitate.

alent plastic strain, the change in Euler angle and hy- 5. The overall strain increment between crack nu-

O e el oy f Y% jcaton ang fral behaviour (5-48=05%) &
g precipite . PNaSE s mewhat larger than that for the case of the stable
Fig. 5f, at overall strain ratios of 1, 4.8 (the strain

. 0
at which the crack nucleates) and 5.3% (the strain eta phase precipitate (0.4%).

to fracture) are shown, respectively, in Fig. 12a—i. A
comparison of the these results with the ones shown
in Fig. 11a—i, reveals the role of martensitic transfor-4. Conclusions
mation as the deformation mechanism on the deformaBased on the results obtained in the present study the
tion fields and the onset of grain boundary—interfacefollowing main conclusions can be drawn:
decohesion.
1. Incompatibilities in plastic flow between adjacent

1. At the same level of overall strain, there is little grains can result in a large build-up tensile hydrostatic
difference in the distribution of the equivalent plastic stress in the region surrounding certain three-grain
strain, Fig. 12a versus Fig. 11a, and Fig. 12b versugunctions and, inturn, give rise to grain boundary crack-
Fig. 11c. As in the case of the configuration containinging. While within the present model, grain boundary—
the stable beta phase precipitate, shear strain displaysterface decohesion is the only allowed mode of fail-
a pronounced deformation band behaviour in grain 12ure, the fact that the computed fracture strain (2.1%)
which persists during deformation up to the onset ofis very comparable with its experimental counter-
failure, Fig. 12a—c. parts (1.5—-3.0%) suggests that grain boundary cracking

2. At an overall strain of 1%, the distribution of the plays an important role in fracture of the materials at
change in Euler angle is very similar for the cases ofhand. The observed intergranular fracture is consistent
the metastable and the stable beta phase precipitategith the scanning electron microscopy results of Kad
Fig. 12d versus Fig. 11d. However, atan overall strain okt al. [10], which show that while the fracture surface
4.8% of the distribution of the change in Euler angle isreveals a combination of intergranular and transgranu-
quite differentin the two cases, Fig. 12e versus Fig. 11elar fracture modes, the region underneath the fracture
The reason for this difference is associated with the facsurface contains numerous grain boundary cracks. In
that in the case of the metastable beta phase precipitat¢éher words, fracture appears to be initiated by grain
the crack at the grain 7—grain 12—precipitate junctionboundary decohesion with subsequent crack propaga-
nucleates at an overall strain of 4.8%, the correspondtion taking place in a mixed mode. The presentanalysis,
ing strain in the case of the stable beta phase preciphowever, did not permit incorporation of the transgran-
tate is only 4.4%. Therefore, in the overall strain rangeular mode of fracture.
between 4.4 and 4.8%, deformation of the grains and 2. Incompatibilities in plastic flow between adjacent
precipitate in the former case is more constrained thamatrix grains are greatly reduced if beta phase precipi-
in the latter case. In fact, comparison of the change inates are introduced at three-grain junctions. By virtue
Euler angle for the two cases at the moment of fractureof their lower strength and a larger number of slip sys-
Figs 12f and 11f, shows similar qualitative features. tems, the beta phase precipitates reduce the build-up

3. The largest difference between the two cases it hydrostatic stress and, in turn, increase the strain to
seen when the distribution of the hydrostatic stress ifracture.
considered. Even at an overall strain of 1%, the con- 3. An additional increase in fracture strain is ob-
tour plots shown in Figs 11g and 12g are quite differ-tained if the beta phase precipitates undergo a marten-
ent. The most prominent difference is that in the casesitic transformation. The beneficial effect of marten-
of the stable beta phase precipitate the largest positiveitic transformation is associated with accompanied
hydrostatic stress is located near the grain 7—grain 12lattice expansion, which further reduces the build-up
precipitate junction, Fig. 11g. In sharp contrast, for thein hydrostatic stress and delays the onset of grain
case of the metastable beta phase precipitate, the highésiundary—interface decohesion.
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